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The amount of geospatial data generated, in particular from segmentation tech-
niques applied to Earth observation (EO) data, is rapidly increasing. This, in
combination with the rising popularity of EO data cubes for time series analysis,
results in a need to adequately structure, represent and further analyse data com-
ing from segmentation approaches. In this study, we explore the use of vector
data cubes for the structuring and analysis of features that evolve in space and
time with a particular focus on geomorphological features due to their high spatio-
temporal variability. Vector data cubes are multi-dimensional data structures that
often contain spatio-temporal data with n-dimensions, with a geometry as the min-
imum spatial dimension and time as the temporal dimension. We consider two
vector data cube formats, i.e., array and tabular, and further extend their concep-
tualisation to contain features that evolve in space and time. We showcase our
implementation for two geomorphological features, the Fagradalsfjall lava flow in
Iceland and the Butangbunasi landslide and landslide-dammed lake in Taiwan. Fi-
nally, we discuss the potential and limitations of vector data cubes, regarding their
technical implementation and application to geomorphology, and further outline
the future research directions.

Introduction

To represent and analyse geographical features in a geographic information system (GIS), poly-
gon outlines are commonly created based on field measurements (e.g., GPS surveys), aerial
photography or Earth observation (EO) satellite imagery. The delineation can be the product
of manual interpretation or of (semi-)automated image segmentation and classification tech-
niques. Examples of the latter are object-based image analysis (OBIA) (Blaschke et al. 2014)
and deep learning techniques such as convolutional neural networks (CNN) (Hoeser, Bachofer,
and Kuenzer 2020) or segment anything models (SAM) (Kirillov et al. 2023). Consequently,
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a series of objects in vector formats representing geographical features can be created for dif-
ferent points in time. Such geospatial objects intrinsically deal with geometries changing over
time and can be seen as regions that grow or shrink, i.e., change their shape over time (Erwig
et al. 1999).

The ability to analyse EO data time series with EO data cubes (EODC) can prove promis-
ing when combined with segmentation techniques. EODCs facilitate the querying of dynamic
information at high temporal intervals, allowing a more comprehensive understanding of land-
scape dynamics. Although segmentation approaches for satellite image time series analysis
have not been fully implemented within EODCs (Lang et al. 2019), advances in deep learning
techniques can quickly develop towards this end (Belgiu and Csillik 2018; Abidi et al. 2021;
Simoes et al. 2021). Hence, ways to adequately represent and analyse the objects resulting
from segmentation approaches, considering their changes in space and time, are needed.

In this study, we explore the use of vector data cubes for the structuring and analysis of features
or objects that evolve in space and time, i.e., shape-evolving features. In particular, we focus
on polygon features that do not change their location (in contrast to trajectory data) but rather
change their extent and shape at different points in time. We have selected geomorphological
features as an exemplary case because of their high spatio-temporal variability. Nevertheless,
vector data cube approaches can be extended to any other geospatial feature like urban area
expansion, vegetation patches, or wetlands, to name a few examples.

Vector data cubes

Geospatial data cubes are defined as multi-dimensional data structures based on regular or ir-
regular grids (represented as arrays), often containing spatio-temporal data with n-dimensions
(Strobl et al. 2017; Baumann et al. 2018). The structured manner of representing spatio-
temporal data has become an intuitive way to organise big EO data, usually in raster or
gridded formats, with minimum two spatial dimensions, i.e., x / y or latitude / longitude.
However, vector data can also be organised within data cubes, where the minimum spatial
dimension required is a geometry. When talking about spatio-temporal data cubes, be them
raster or vector, an additional dimension, i.e., time, is often included.

The typical example of the use of vector data cubes is locations that contain multi-temporal
data such as in-situ sensor station datasets, aggregation of raster information over specific
areas, or the results of raster data sampling at point locations (Pebesma 2021). In these cases,
the geometry of these locations does not change over time, but their associated parameters do.
Representing multi-temporal data with unique locations in vector data cubes in comparison to
traditional data structures in GIS, such as long or wide table formats, has several advantages.
For instance, data replication in the form of duplicated rows or an excessive amount of columns
for table formats is avoided. Further, an array-like representation of vector data allows indexing
for fast lookup tasks and the use of several operations popular for raster data cubes such as
filtering, aggregation, reduction and resampling.
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Another way of representing spatio-temporal data in tabular formats has been implemented
by Zhang et al. (2022) in their R package {cubble}. The concept behind {cubble} relies on
the tidy data framework (Wickham 2014) by structuring the relational temporal and spatial
data in two different, yet interlinked tables or data frames. These are referred as spatial
and temporal tables or faces of a spatio-temporal cube. {cubble} combines the power of the
{sf} package for spatial vector data analysis (Pebesma 2018) and the {tsibble} package for
time series analysis (Wang, Cook, and Hyndman 2020). In this manner, data replication is
minimised and a flexibility between analysing the spatial or temporal component of the data
is introduced.

In this study, we have explored array and tabular formats for spatio-temporal data, considering
that both represent ways of structuring data as vector data cubes. This is because even if the
approach by Zhang et al. (2022) is mostly tabular, it can be directly coerced (i.e., translated)
into and from array formats, namely the ones supported by the R package {stars} (Pebesma
and Bivand 2023). Therefore, for the purpose of this paper, we refer to vector data cubes in
1) array and 2) tabular formats.

Extending the cube design

The organisation of geospatial data in the domains of space, time, and theme is a known
concept (Sinton 1978; Yuan 1999), as these domains are inherent to geospatial phenomena.
Subsequently, different approaches with varying focus have been implemented (e.g., online an-
alytical processing (OLAP) data cubes, temporal GIS, raster data cubes, and array databases).
What is common is that access of the values (often called measures) is facilitated through coor-
dinate values or indices along dimensions that represent the domains (e.g., latitude / longitude
for space). For instance, organising weather station data into a data cube would at least in-
volve the geometry dimension with the unchanging locations of the stations, and the time
dimension with the data timestamps.

In the case of shape-evolving features such as geomorphological landforms, one of the param-
eters that changes, or in other words, the measure, is the geometry itself. Therefore, we have
assigned the changing geometries to the cell values. This approach leaves only the time as
a dimension of the data cube. A unique group identifier for each feature set could become
a second dimension, which is used to index the feature set. However, a spatial dimension is
required to perform any spatial analysis. To handle this, we have come up with the concept of
summary geometry, which, as its name implies, is a geometry that represents all the changing
geometries for a feature. The summary geometry (symbolised as geom_sum) can be defined
depending on the use case and the way we want to analyse the data. We have identified the
following cases, where geom_sum could be:

a) the union and dissolve operation of all polygons over time corresponding to the same
feature,
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b) the centroid of a),
c) the bounding box of a), or
d) a representative point of the temporal feature set

Representative points in d) for geomorphological features could be, for example, the location
of the crater from which lava erupts, or the location of the landslide dam that blocked a river
and generated a landslide-dammed lake.

For data cubes in tabular format, Wang, Cook, and Hyndman (2020) define two contextual
semantics: index, which is a variable ordered from past to present, and key, a set of variables
that define observational units over time. Each observation is identified by an index and key.
Hence, for the tabular format, the geom_sum dimension becomes the key for the spatial table.
The time dimension becomes the index column for the temporal table.

The resulting spatial table contains one row per feature set, with the geom_sum and a list-
column ts, which stands for time series. The ts list-column stores the time series data in
a nested format. For shape-evolving features, the ts list-column contains the time as the
index, along with the changing geometries and other attributes that change over time. This
information is then stored in the temporal table.

In practice, the tabular format requires an identifier other than a geometry column, and hence
an id column or another type of identifier is recommended for a seamless interaction between
the spatial and temporal tables.

Figure 1 demonstrates how the shape-evolving features are represented in both an array and
tabular vector data cube.

Geomorphology applications

Geomorphological features are often highly dynamic in space and time. Assessing the evolution
of landforms such as glaciers, proglacial lakes, lava flows, landslides or gully erosion allow the
understanding of landscape patterns and interrelations. Moreover, some of these features are
related to natural hazards, where monitoring their evolution becomes relevant for disaster risk
reduction (DRR) and mitigation. Depending on the activity level of the landform, changes in
their shape or surface area over time are expected. Extracting the outlines of these dynamic
landforms allows spatio-temporal analysis, for example, to compute changes in area or volume,
or to aggregate information from gridded datasets to represent zonal statistics for the landform.
Therefore, we have considered geomorphological landforms as exemplary features to test vector
data cubes.
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Figure 1: Structuring shape-evolving features in vector data cubes in array and tabular formats.
a) Schema of shape-evolving features over time. b) Vector data cube in array format,
with the summary geometry geom_sum represented by a POINT geometry. Adapted
from OpenEO developers (2024). c) Vector data cube in tabular format showing the
spatial and temporal tables. Adapted from Zhang et al. (2022).
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Vector data cube implementation

Geomorphological analyses often focus on the evolution of a limited number of landforms over
time. Therefore, to showcase the use of vector data cubes for shape-evolving features we have
selected two examples of such studies. The first study by Hölbling et al. (2020) analysed
the evolution of the Butangbunasi landslide in Taiwan from 1984 to 2018 and related the
changes in area to typhoon events, correlating heavy rainfall with the landslide size expansion,
but also quantifying the natural re-vegetation effect. The authors used an OBIA approach
to segment and classify the landslide area along with landslide-dammed lakes occurring for a
couple of time steps. For the second study, Pedersen et al. (2022) performed a near real-time
photogrammetric surveying of the 2021 Fagradalsfjall eruption on the Reykjanes Peninsula,
Iceland. The main focus was the lava flow monitoring, where area, volume and thickness
change maps were computed. The lava outlines were digitised manually from orthomosaic
imagery collected during the surveys.

We performed the experiments in R software v. 4.3.2 (R Core Team 2023). With the de-
lineations from both studies, we proceeded to organise and wrangle the data to combine the
different files into a single {sf} data frame. It was important to guarantee that each obser-
vation belonged to the same geomorphological landform, that the timestamps were consistent
and clearly identified, and that the geometries were valid. Moreover, we worked with a single
geometry per time step, meaning that we combined individual polygons into multi-polygons
when mapped for the same time step, and ordered them chronologically. Then, we computed
geom_sum, in this case, the centroid of the union and dissolve of all geometries corresponding
to the feature set. The geom_sum was repeated for every row corresponding to the same feature
set. Once the data were pre-processed, we could coerce the spatial data frames into the vector
data cube formats.

Array format

For the array format, we used the {stars} package. We created an array object including
the data that would populate the array cells (the changing geometries of the feature set), the
dimensions and their names (geom_sum and time). Next, we created a dimensions object
with the function stars::st_dimensions(), containing the values for the dimensions of the
cube. Finally, we combined these objects in a stars object. The way the vector data cube is
structured is illustrated with the example of the lava flow outlines.

stars object with 2 dimensions and 1 attribute
attribute(s):

geometry
MULTIPOLYGON : 2
POLYGON :28
epsg:3057 : 0
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+proj=lcc ...: 0
dimension(s):

from to refsys point
geom_sum 1 1 ISN93 / Lambert 1993 TRUE
datetime 1 30 POSIXct FALSE

values
geom_sum POINT (339860 380008)
datetime 2021-03-20 08:45:00,...,2021-09-30 16:20:00

Once the data cube is created, we can perform different spatial analyses, for example, comput-
ing the area of the changing geometries or filtering the data in the cube within specific dates
(Figure 2). Examples of these computations are presented in the computational notebook in
the GitHub repository (see Section ).

Tabular format

For the tabular format we used {cubble}. Here we exemplify the approach with the Butang-
bunasi landslide and lake outlines in Taiwan. For this vector data cube format we defined the
key as the feature type (i.e., class) and the index as the time dimension, in this case called
date. {cubble} presents the spatial and temporal tables separately. To get each of them
one would call cubble::face_spatial() or cubble::face_temporal(), respectively. When
creating the cube, the default table face is spatial, i.e., a nested form. The nested list-column
corresponds to the time series, which is stored row-wise per feature set. The temporal face is
structured as a long format table.

cube_tab |>
face_spatial()

# cubble: key: class [2], index: date, nested form, [sf]
# spatial: [271664.917737363, 2567227.57526178, 274148.347513089,
# 2568861.92906261], WGS 84 / UTM zone 51N
# temporal: date [date], sensor [chr], area [[ha]], geom [GEOMETRY [m]]
class x y geom_sum ts

* <chr> <dbl> <dbl> <POINT [m]> <list>
1 lake 274148. 2567228. (274148.3 2567228) <tibble [20 x 4]>
2 landslide 271665. 2568862. (271664.9 2568862) <tibble [20 x 4]>

cube_tab |>
face_temporal() |>
arrange(date)
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Figure 2: Lava flow outlines in Fagradalsfjall, Iceland a) Lava flow outlines of the complete lava
flow time series. b) Filtered lava flow time series between 18.03. and 25.03.2021.
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# cubble: key: class [2], index: date, long form
# temporal: 1984-12-12 -- 2021-08-28 [8D], has gaps!
# spatial: x [dbl], y [dbl], geom_sum [POINT [m]]

class date sensor area geom
<chr> <date> <chr> [ha] <GEOMETRY [m]>

1 lake 1984-12-12 <NA> NA GEOMETRYCOLLECTION EMPTY
2 landslide 1984-12-12 Landsat 5 66.2 MULTIPOLYGON (((271637.5 2568620, 2716~
3 lake 1989-10-23 <NA> NA GEOMETRYCOLLECTION EMPTY
4 landslide 1989-10-23 Landsat 5 62.4 MULTIPOLYGON (((273712.5 2566845, 2735~
5 lake 1990-10-10 Landsat 5 5.31 MULTIPOLYGON (((273887.5 2566870, 2738~
6 landslide 1990-10-10 Landsat 5 78.2 MULTIPOLYGON (((273737.5 2566845, 2737~
7 lake 1992-10-31 Landsat 5 3.33 POLYGON ((273950 2566870, 273925 25668~
8 landslide 1992-10-31 Landsat 5 121. MULTIPOLYGON (((273462.5 2566820, 2734~
9 lake 1994-09-03 <NA> NA GEOMETRYCOLLECTION EMPTY

10 landslide 1994-09-03 Landsat 5 94.1 MULTIPOLYGON (((273500 2566820, 273462~
# i 30 more rows

This dataset contains further information on the individual geometries, such as the satellite
sensor used to map the data and the area of the objects. With these attributes we can do time
series plots to visualise the variations in time, as shown in Figure 3.

Data and Software Availability

The Butangbunasi landslide outlines can be obtained from Hölbling et al. (2024). The lava
flow outlines for the Fagradalsfjall eruption can be obtained from Pedersen et al. (2023), along
with derived digital elevation models (DEMs) and orthomosaics.

A GitHub repository with an example notebook containing the code to download and wrangle
the data, create vector data cubes, perform spatial analysis and generate the figures in Sec-
tion can be accessed here: https://github.com/loreabad6/vdc-space-time-feats. The reposi-
tory also contains the system set-up and software versions used.

Discussion

Implementation design

We have exemplified the use of vector data cubes for a single geomorphological feature evolving
over time, that is the lava flow in Fagradalsfjall; and also with two feature sets that evolve
over time, i.e., the Butangbunasi landslide and the associated landslide-dammed lake. However,
feature extraction workflows can result in several shape-evolving features, be them of the same
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Figure 3: Time series plot of attributes of the Butangbunasi landslide and landslide-dammed
lake dataset. a) Butangbunasi landslide and lake delineations at different points in
time represented in a multi-dimensional form. b) Time series graph of landslide area
with a marker at the bottom of the panel for every lake occurrence.
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type (e.g., a landslide spatio-temporal databases) or different (e.g., a spatio-temporal database
with several landslides and lakes).

In these situations, we might face different issues, mainly with the amount of geometries to
be handled and the scalability of the approach. As we have seen with the Butangbunasi
case, we encounter situations where a geometry is present at a specific point in time for
the landslide class, while at the same time the geometry for the lake is absent since there
was no lake occurrence for that timestamp. For the array implementation, this means the
inclusion of empty geometries within the array cells. Even if we can include such lack of data,
the advantages of using the array approach in terms of performance and scalability might
become limited. In these cases, working with tabular formats could result in a more efficient
approach. However, the array format allows the addition of further dimensions, which is
not the case for the tabular format as it is tailored for handling space-time data specifically.
The addition of a dimension referring to the geomorphological feature type (c.f., Fig. code
output as figure 4, the dimension class) could become useful when the analysis focuses on
different geomorphological feature types in an area. Further exploration towards scaling these
approaches will be tested in future work.

Similarly to what is presented by Hamdani, Thibaud, and Claramunt (2020) and Hamdani
et al. (2023), we expect that structuring the data in vector data cubes will allow a seamless
integration with gridded data structured in raster data cubes. Issues regarding computational
performance for such integration still need to be tested in future work.

Even though we have introduced the vector data cube format using the R ecosystem, Python
packages could also support similar data structures, for example with the package {xvec},
currently under development (Fleischmann and Bovy 2022). {xvec} follows the concepts and
implementation of {stars} and supports the handling of data with {xarray} (Hoyer and Ham-
man 2017), a package often used for raster data cube analysis. For the tabular format, possible
implementations, including approaches that involve {geopandas} (Jordahl et al. 2020) could
be further explored.

Finally, the concept of summary geometry could be extended to line and point geometries,
although the assumptions to conceptualise how to represent the summarising geometry would
need to be revised.

Potential for geomorphology

Focusing on a small number of geomorphological feature brings the advantage of guaranteeing
that the analyst can match the delineations to the same feature, making it possible to assign
a unique identifier to the feature set.

However, geomorphological analyses could require the combination of data from distinct
sources that have performed mapping of a feature over time, or could focus on multiple
features mapped in an area that evolve over time, e.g., landslide-dammed lakes originating
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from the Kaikoura earthquake in 2016 in New Zealand (Abad et al. 2022). Here, assigning
a unique identifier to individual features could prove useful to track the evolution of single
objects over time. Techniques on how to perform such spatio-temporal grouping of feature
sets still have to be further investigated.

Moreover, transitioning from a pixel-based analysis of geomorphological features to an object-
based representation can enhance the spatio-temporal analysis of regional landscape changes.
For instance, instead of reporting overall statistics of water pixels detected for the Kaikoura
region, one could calculate statistics on the number of landslide-dammed lake features detected
in the area, as well as being able to analyse the evolution of the lakes at the object level. We
believe that this study is an initial point towards such analyses, where vector data cube
representations could be a way to structure data coming from EODC analyses.

With the rapidly increasing amount of geospatial data, it is essential to develop ways to store,
manage, and analyse them efficiently. Enhancing the analysis and representation capabili-
ties of shape-evolving features, particularly geomorphological features, is important in several
respects. Vector data cubes can facilitate the generation of pertinent information on the
spatio-temporal dynamics of features such as landslides or lava flows, which can contribute to
better understanding landscape evolution, be used as input for natural hazard modelling, and
support hazard mitigation and DRR efforts.

Conclusion

Several ways to structure and analyse spatio-temporal vector data have been proposed within
GIScience. Vector data cubes as outlined in this paper build on top of these concepts. In
this study, we presented a proof-of-concept of the use of vector data cubes for features that
evolve in space and time. We showcased this with examples of geomorphological features,
where established methods for analysing time series at the object level are currently lacking.
We expect that the extended use of vector data cubes outlined in this paper can improve the
insights derived from EO data.
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