References
Allaire, JJ. 2023. Quarto: R Interface to Quarto Markdown Publishing
System. https://github.com/quarto-dev/quarto-r.
Appelhans, Tim, Florian Detsch, Christoph Reudenbach, and Stefan
Woellauer. 2022. Mapview: Interactive Viewing of Spatial Data in
r. https://github.com/r-spatial/mapview.
Aydin, Orhun, Dmitry Pavlushko, Shaun Walbridge, Steve Kopp, and Mark V.
Janikas. 2024. “Arcgisbinding: An r Package for Integrating r and
ArcGIS.” Environmental Modelling &Amp; Software 172
(January): 105904. https://doi.org/10.1016/j.envsoft.2023.105904.
Bishwal, R. M. 2017. “Potential Use of r-Statistical Programming
in the Field of Geoscience.” In 2017 2nd International
Conference for Convergence in Technology (I2CT), 979–82. https://doi.org/10.1109/I2CT.2017.8226275.
Bivand, Roger. 2024. Rgrass: Interface Between ’GRASS’ Geographical
Information System and ’r’. https://rsbivand.github.io/rgrass/.
Brenning, Alexander, Donovan Bangs, and Marc Becker. 2022. RSAGA:
SAGA Geoprocessing and Terrain Analysis. https://CRAN.R-project.org/package=RSAGA.
Câmara, Gilberto, Rolf Simoes, Felipe Souza, Charlotte Pelletier, Alber
Sanchez, Pedro Andrade, Karine Ferreira, and Gilberto Queiroz. 2023.
“sits: Satellite Image Time Series
Analysis on Earth Observation Data Cubes.” 2023. https://e-sensing.github.io/sitsbook/index.html.
Dunnington, Dewey, Floris Vanderhaeghe, Jan Caha, and Jannes Muenchow.
n.d. “R Package Qgisprocess: Use QGIS Processing
Algorithms.” https://github.com/r-spatial/qgisprocess/.
Hijmans, Robert. 2020. “Terra and Luna: New r Packages Scalable
Geospatial Data Analysis.” Big Data in Agriculture - 2020
Convention. 2020. https://www.youtube.com/watch?v=5b2xhqlH49I&t=690s.
Hijmans, Robert J. 2024. Terra: Spatial Data Analysis. https://rspatial.org/.
Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. 2019.
Geocomputation with R. CRC Press.
Pebesma, Edzer. 2018. “Simple Features for R:
Standardized Support for Spatial Vector Data.”
The R Journal 10 (1): 439–46. https://doi.org/10.32614/RJ-2018-009.
———. 2023a. Sf: Simple Features for r. https://r-spatial.github.io/sf/.
———. 2023b. Stars: Spatiotemporal Arrays, Raster and Vector Data
Cubes. https://r-spatial.github.io/stars/.
Pebesma, Edzer, and Roger Bivand. 2023a. Spatial Data Science: With applications in R.
Chapman and Hall/CRC. https://doi.org/10.1201/9780429459016.
———. 2023b. Spatial Data Science: With
applications in R. London: Chapman; Hall/CRC. https://doi.org/10.1201/9780429459016.
Pebesma, Edzer, Thomas Mailund, and James Hiebert. 2016.
“Measurement Units in R.” R Journal 8
(2): 486–94. https://doi.org/10.32614/RJ-2016-061.
Pebesma, Edzer, Thomas Mailund, Tomasz Kalinowski, and Iñaki Ucar. 2023.
Units: Measurement Units for r Vectors. https://r-quantities.github.io/units/.
R Core Team. 2023. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
Reudenbach, Chris. 2023. link2GI: Linking Geographic Information
Systems, Remote Sensing and Other Command Line Tools. https://CRAN.R-project.org/package=link2GI.
Slater, Louise J., Guillaume Thirel, Shaun Harrigan, Olivier Delaigue,
Alexander Hurley, Abdou Khouakhi, Ilaria Prosdocimi, Claudia Vitolo, and
Katie Smith. 2019. “Using r in Hydrology: A Review of Recent
Developments and Future Directions.” Hydrology and Earth
System Sciences 23 (7): 2939–63. https://doi.org/10.5194/hess-23-2939-2019
.
Tennekes, Martijn. 2018. “tmap:
Thematic Maps in R.” Journal of Statistical
Software 84 (6): 1–39. https://doi.org/10.18637/jss.v084.i06.
———. 2023. Tmap: Thematic Maps. https://github.com/r-tmap/tmap.
Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data
Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen,
Kohske Takahashi, Claus Wilke, Kara Woo, Hiroaki Yutani, Dewey
Dunnington, and Teun van den Brand. 2024. Ggplot2: Create Elegant
Data Visualisations Using the Grammar of Graphics. https://ggplot2.tidyverse.org.
Xie, Yihui. 2014. “Knitr: A Comprehensive Tool for Reproducible
Research in R.” In Implementing Reproducible
Computational Research, edited by Victoria Stodden, Friedrich
Leisch, and Roger D. Peng. Chapman; Hall/CRC.
———. 2015. Dynamic Documents with R and Knitr. 2nd
ed. Boca Raton, Florida: Chapman; Hall/CRC. https://yihui.org/knitr/.
———. 2023. Knitr: A General-Purpose Package for Dynamic Report
Generation in r. https://yihui.org/knitr/.