References
Allaire, J., & Dervieux, C. (2024). Quarto: R interface to
quarto markdown publishing system. https://github.com/quarto-dev/quarto-r
Andreo, V. (2024). Get started with GRASS & r: The rgrass
package. https://grass-tutorials.osgeo.org/content/tutorials/get_started/fast_track_grass_and_R.html.
Appel, M. (2024). Gdalcubes: Earth observation data cubes from
satellite image collections. https://github.com/appelmar/gdalcubes
Appel, M., & Pebesma, E. (2019). On-demand processing of data cubes
from satellite image collections with the gdalcubes library.
Data, 4(3). https://www.mdpi.com/2306-5729/4/3/92
Appel, M., Pebesma, E., & Mohr, M. (2021). Cloud-based
processing of satellite image collections in r using STAC, COGs, and
on-demand data cubes. https://r-spatial.org/r/2021/04/23/cloud-based-cubes.html
Appelhans, T., Detsch, F., Reudenbach, C., & Woellauer, S. (2023).
Mapview: Interactive viewing of spatial data in r. https://github.com/r-spatial/mapview
Aybar, C. (2023). Rgee: R bindings for calling the earth engine
API. https://github.com/r-spatial/rgee/
Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial point
patterns: Methodology and applications with R.
Chapman; Hall/CRC Press. https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/p/book/9781482210200/
Baddeley, A., & Turner, R. (2005). spatstat: An R package for analyzing
spatial point patterns. Journal of Statistical Software,
12(6), 1–42. https://doi.org/10.18637/jss.v012.i06
Baddeley, A., Turner, R., Mateu, J., & Bevan, A. (2013). Hybrids of
gibbs point process models and their implementation. Journal of
Statistical Software, 55(11), 1–43. https://doi.org/10.18637/jss.v055.i11
Bivand, R. (2022). Modernizing the r-GRASS interface: Confronting
barn-raised OSGeo libraries and the evolving r.*spatial package
ecosystem. https://rsbivand.github.io/foss4g_2022/modernizing_220822.html.
Bivand, R. (2024a). Rgrass: Interface between GRASS geographical
information system and r. https://rsbivand.github.io/rgrass/
Bivand, R. (2024b). Spdep: Spatial dependence: Weighting schemes,
statistics. https://github.com/r-spatial/spdep/
Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2013). Applied
spatial data analysis with R, second edition.
Springer, NY. https://asdar-book.org/
Bivand, R., Nowosad, J., & Lovelace, R. (2024). spData: Datasets
for spatial analysis. https://jakubnowosad.com/spData/
Bivand, R., & Wong, D. W. S. (2018). Comparing implementations of
global and local indicators of spatial association. TEST,
27(3), 716–748. https://doi.org/10.1007/s11749-018-0599-x
Câmara, G., Simoes, R., Souza, F., Pelletier, C., Sanchez, A., Andrade,
P., Ferreira, K., & Queiroz, G. (2023). sits: Satellite image time series analysis on
Earth observation data cubes. https://e-sensing.github.io/sitsbook/index.html
Çetinkaya-Rundel, M. (2024). Quarto dashboards video series. https://quarto.org/docs/blog/posts/2024-11-22-dashboards-workshop/.
Dunnington, D., Vanderhaeghe, F., Caha, J., & Muenchow, J. (2024a).
Qgisprocess: Use QGIS processing algorithms. https://r-spatial.github.io/qgisprocess/
Dunnington, D., Vanderhaeghe, F., Caha, J., & Muenchow, J. (2024b).
R package qgisprocess: Use QGIS processing algorithms. Version
0.4.1. https://r-spatial.github.io/qgisprocess/
Eddelbuettel, D. (2024). Digest: Create compact hash digests of r
objects. https://github.com/eddelbuettel/digest
Gräler, B., Pebesma, E., & Heuvelink, G. (2016). Spatio-temporal
interpolation using gstat. The R Journal, 8, 204–218.
https://journal.r-project.org/archive/2016/RJ-2016-014/index.html
Grolemund, G., & Wickham, H. (2011). Dates and times made easy with
lubridate. Journal of Statistical
Software, 40(3), 1–25. https://www.jstatsoft.org/v40/i03/
Hadley Wickham, J. B. (2023). R packages (2nd ed.). O’Reilly
Media.
Hijmans, R. J. (2020). Terra and luna: New r packages scalable
geospatial data analysis. Big Data in Agriculture - 2020
Convention. https://www.youtube.com/watch?v=5b2xhqlH49I&t=690s
Hijmans, R. J. (2024a). Spatial data science with R and terra. https://rspatial.org/index.html.
Hijmans, R. J. (2024b). Terra: Spatial data analysis. https://rspatial.org/
Jenny Bryan, J. H., the STAT 545 TAs. (2025). Let’s git started |
happy git and GitHub for the useR. https://happygitwithr.com/.
Li, X., & Anselin, L. (2024). Rgeoda: R library for spatial data
analysis. https://github.com/geodacenter/rgeoda/
Loiseau, N., Mouquet, N., Casajus, N., Grenié, M., Guéguen, M.,
Maitner, B., Mouillot, D., Ostling, A., Renaud, J., Tucker, C., Velez,
L., Thuiller, W., & Violle, C. (2020). Global distribution and
conservation status of ecologically rare mammal and bird species.
Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18779-w
Lovelace, R., Nowosad, J., & Muenchow, J. (2019). Geocomputation
with R. CRC Press.
Mahoney, M. (n.d.). Rsi: Efficiently retrieve and process satellite
imagery (Version 0.2.0.9000). https://doi.org/10.5281/zenodo.10926857
Mahoney, M. (2024). Rsi: Efficiently retrieve and process satellite
imagery. https://github.com/Permian-Global-Research/rsi
Mark Padgham. (2019). Dodgr: An r package for network flow aggregation.
Transport Findings. https://doi.org/10.32866/6945
Massicotte, P., & South, A. (2023). Rnaturalearth: World map
data from natural earth. https://docs.ropensci.org/rnaturalearth/
Meyer, C. (2022). Understanding the basics of package writing in
r. https://cosimameyer.com/post/understanding-the-basics-of-package-writing-in-r/.
Müller, K., & Wickham, H. (2023). Tibble: Simple data
frames. https://tibble.tidyverse.org/
Padgham, M., Petutschnig, A., & Cooley, D. (2024). Dodgr:
Distances on directed graphs. https://github.com/UrbanAnalyst/dodgr
Parry, J., & Locke, D. (2024). Sfdep: Spatial dependence for
simple features. https://sfdep.josiahparry.com
Pawley, S. (2024). Rsagacmd: Linking r with the open-source SAGA-GIS
software. https://stevenpawley.github.io/Rsagacmd/
Pebesma, E. (2018). Simple Features for R:
Standardized Support for Spatial Vector Data. The R
Journal, 10(1), 439–446. https://doi.org/10.32614/RJ-2018-009
Pebesma, E. (2024). Stars: Spatiotemporal arrays, raster and vector
data cubes. https://r-spatial.github.io/stars/
Pebesma, E. (2025). Sf: Simple features for r. https://r-spatial.github.io/sf/
Pebesma, E. J. (2004). Multivariable geostatistics in S:
The gstat package. Computers & Geosciences, 30,
683–691.
Pebesma, E., & Bivand, R. (2023). Spatial
Data Science: With applications in R. Chapman and
Hall/CRC. https://doi.org/10.1201/9780429459016
Pebesma, E., & Graeler, B. (2024). Gstat: Spatial and
spatio-temporal geostatistical modelling, prediction and
simulation. https://github.com/r-spatial/gstat/
Pedersen, T. L. (2024). Tidygraph: A tidy API for graph
manipulation. https://tidygraph.data-imaginist.com
Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in
s and s-PLUS. Springer. https://doi.org/10.1007/b98882
Pinheiro, J., Bates, D., & R Core Team. (2024). Nlme: Linear and
nonlinear mixed effects models. https://svn.r-project.org/R-packages/trunk/nlme/
Plate, T., & Heiberger, R. (2024). Abind: Combine
multidimensional arrays.
R Core Team. (2024). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. https://www.R-project.org/
Roger Bivand. (2022). R packages for analyzing spatial data: A
comparative case study with areal data. Geographical Analysis,
54(3), 488–518. https://doi.org/10.1111/gean.12319
Rydzik, M. (2024, January 10). An Overview of the RSI R
Package for Retrieving Satellite Imagery and Calculating Spectral
Indices. https://geocompx.org/post/2024/rsi-bp1/
Simoes, R., Camara, G., Queiroz, G., Souza, F., Andrade, P., Santos, L.,
Carvalho, A., & Ferreira, K. (2021). Satellite image time series
analysis for big earth observation data. Remote Sensing,
13(13), 2428. https://doi.org/10.3390/rs13132428
Simoes, R., Camara, G., Souza, F., & Carlos, F. (2024). Sits:
Satellite image time series analysis for earth observation data
cubes. https://github.com/e-sensing/sits/
Simoes, R., Carvalho, F., & Brazil Data Cube Team. (2024).
Rstac: Client library for SpatioTemporal asset catalog. https://brazil-data-cube.github.io/rstac/
Simoes, R., Souza, F., Zaglia, M., Queiroz, G. R., Santos, R., &
Ferreira, K. (2021). Rstac: An r package to access spatiotemporal asset
catalog satellite imagery. 2021 IEEE International Geoscience and
Remote Sensing Symposium IGARSS, 7674–7677. https://doi.org/10.1109/IGARSS47720.2021.9553518
Spinu, V., Grolemund, G., & Wickham, H. (2023). Lubridate: Make
dealing with dates a little easier. https://lubridate.tidyverse.org
Therneau, T., & Atkinson, B. (2023). Rpart: Recursive
partitioning and regression trees. https://github.com/bethatkinson/rpart
van der Meer, L., Abad, L., Gilardi, A., & Lovelace, R. (2025).
Sfnetworks: Tidy geospatial networks. https://luukvdmeer.github.io/sfnetworks/
Vreede, B. (2023). Why your research deserves to be an r
package. https://blog.esciencecenter.nl/why-your-research-deserves-to-be-an-r-package-3737a73501c.
Vuorre, M., & Crump, M. J. C. (2020). Sharing and organizing
research products as r packages. Behavior Research Methods,
53(2), 792â802. https://doi.org/10.3758/s13428-020-01436-x
Watson, S. S. (n.d.). A Julia-Python-R
reference sheet. Retrieved November 21, 2024, from https://docslib.org/doc/2547802/julia-python-r-cheatsheet
Wickham, H. (2011). Testthat: Get started with testing. The R
Journal, 3, 5–10. https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
Wickham, H. (2014). Tidy data. Journal of Statistical Software,
59(10). https://doi.org/10.18637/jss.v059.i10
Wickham, H. (2016). ggplot2: Elegant graphics for data
analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H. (2019). Advanced R (p. 588). CRC
Press.
Wickham, H. (2021). Mastering shiny. "O’Reilly Media, Inc.".
Wickham, H. (2023a). Forcats: Tools for working with categorical
variables (factors). https://forcats.tidyverse.org/
Wickham, H. (2023b). Stringr: Simple, consistent wrappers for common
string operations. https://stringr.tidyverse.org
Wickham, H. (2023c). Tidyverse: Easily install and load the
tidyverse. https://tidyverse.tidyverse.org
Wickham, H. (2024). Testthat: Unit testing for r. https://testthat.r-lib.org
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to
the tidyverse. Journal of Open Source
Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., Bryan, J., Barrett, M., & Teucher, A. (2024).
Usethis: Automate package and project setup. https://usethis.r-lib.org
Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for
data science (2nd ed.). O’Reilly Media.
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K.,
Wilke, C., Woo, K., Yutani, H., Dunnington, D., & van den Brand, T.
(2024). ggplot2: Create elegant data visualisations using the
grammar of graphics. https://ggplot2.tidyverse.org
Wickham, H., Danenberg, P., Csárdi, G., & Eugster, M. (2024).
roxygen2: In-line documentation for r. https://roxygen2.r-lib.org/
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D.
(2023). Dplyr: A grammar of data manipulation. https://dplyr.tidyverse.org
Wickham, H., & Henry, L. (2023). Purrr: Functional programming
tools. https://purrr.tidyverse.org/
Wickham, H., Hesselberth, J., Salmon, M., Roy, O., & Brüggemann, S.
(2024). Pkgdown: Make static HTML documentation for a package.
https://pkgdown.r-lib.org/
Wickham, H., Hester, J., & Bryan, J. (2024). Readr: Read
rectangular text data. https://readr.tidyverse.org
Wickham, H., Hester, J., Chang, W., & Bryan, J. (2022).
Devtools: Tools to make developing r packages easier. https://devtools.r-lib.org/
Wickham, H., Vaughan, D., & Girlich, M. (2024). Tidyr: Tidy
messy data. https://tidyr.tidyverse.org
Xie, Y. (2014). Knitr: A comprehensive tool for reproducible research in
R. In V. Stodden, F. Leisch, & R. D. Peng (Eds.),
Implementing reproducible computational research. Chapman;
Hall/CRC.
Xie, Y. (2015). Dynamic documents with R and knitr
(2nd ed.). Chapman; Hall/CRC. https://yihui.org/knitr/
Xie, Y. (2024). Knitr: A general-purpose package for dynamic report
generation in r. https://yihui.org/knitr/